Submit Manuscript    >>    Login | Register

Intracardiac ECHO Integration With Three Dimensional Mapping: Role in AF Ablation


Catheter ablation of atrial fibrillation (AF) is typically guided by 3D mapping. This involves point-by-point reconstruction of the 3D virtual anatomy and may be time consuming and require substantial fluoroscopy exposure. Intracardiac echocardiography (ICE) affords real time imaging of the cardiac structures during mapping and ablation.

Methods: Between February and May 2007, 15 patients (100% men, 10 with paroxysmal AF) presenting for AF ablation were offered mapping using a novel system integrating 3D mapping and ICE. A modified ICE probe with location sensor tracked by the mapping system was positioned in the right atrium (RA). This allowed acquisition of ECG gated images of the left atrium (LA). Endocardial contours were traced on each image and were used to generate a registered 3D map.

Results: 3D maps took a mean of 51+/-25 minutes to create, PRIOR to entering the LA and without fluoroscopy. Pulmonary veins and the esophagus were rendered in 3D. A complete map was built from a mean of 46+/-19 contours. While the maps were precise prior to instrumentation of the left atrium, they were easily distorted if points collected by the mapping catheter were combined with the original map due to deformation of the left atrial geometry by the relatively stiff ablation catheter. Pulmonary vein antrum isolation was guided by a circular mapping catheter. Since this catheter could not be visualized on the CARTO map, fluoroscopy was used to track its position and the contact between the ablation catheter and the circular mapping catheter. No substantial reduction in fluoroscopy time was thus realized as expected. At 10+/-1 months of followup, 73% of the patients were in sinus rhythm after the initial three month blanking period. No patient suffered any complications related to the procedure or in follow-up.

Conclusions: A mapping system combining ICE and 3D electroanatomical mapping can feasibly reconstruct a 3D shell of the LA and the pulmonary veins without the need to enter the left heart. The map created is sensitive to distortion during point-by-point mapping with the standard ablation catheter.

Credits: Yaariv Khaykin, MD; Allan Skanes, MD; Zaev A. Wulffhart, MD; Lorne Gula, MD; Bonnie Whaley, CVT; Richard Oosthuizen; Catherine Seabrook, RN; Marianne Beardsal, RN; Atul Verma, MD.



Biosense Webster
event date
Introduction to AFib
Ablation Specialist

View Ablation Specialists